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Relative expression quantitative real-time polymerase chain reaction (RT-qPCR) 
experiments are a common means of estimating transcript abundances across biological 
groups and experimental treatments. One of the most frequently used expression 
measures that results from such experiments is the relative expression ratio (RE), which 
describes expression in experimental samples (i.e., RNA isolated from organisms, 
tissues, and/or cells that were exposed to one or more experimental or nonbaseline 
condition) in terms of fold change relative to calibrator samples (i.e., RNA isolated from 
organisms, tissues, and/or cells that were exposed to a control or baseline condition). 
Over the past decade, several models of RE have been proposed, and it is now clear that 
endogenous reference gene stability and amplification efficiency must be assessed in 
order to ensure that estimates of RE are valid. In this review, we summarize key issues 
associated with estimating RE from cycle threshold data. In addition, we describe several 
methods based on linear modeling that enable researchers to estimate model parameters 
and conduct quality control procedures that assess whether model assumptions have 
been violated.  

KEYWORDS: amplification efficiency, endogenous reference gene, gene expression, linear 
regression, real-time quantitative reverse transcription PCR, relative expression ratio 

 

INTRODUCTION 

Overview 

Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a method of 

quantifying transcript abundances that is routinely used to investigate expression in a small to moderate 

number of genes. In particular, RT-qPCR is frequently used to confirm microarray results and to 

investigate the expression of rare transcripts[1,2,3,4,5,6]. The primary strength of RT-qPCR is that its 

large dynamic range makes it well suited for quantifying low abundance transcripts and transcripts that 

vary widely in abundance between groups of interest[7,8,9]. Nevertheless, there are a number of 
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difficulties associated with generating high-quality RT-qPCR data. Previous reviews have described many 

of these issues, including ensuring that RNA is of a sufficient quality and purity[10,11], the pros and cons 

of various approaches to generating cDNA via reverse transcription[7,10,12,13], the importance of proper 

sample storage[11], the need for careful primer design and assay validation[11], and the advantages and 

drawbacks to different detection chemistries[6,10,14,15]. However, comparatively little effort has been 

spent reviewing the issues associated with analysis and quality control of RT-qPCR data.  

Over the past decade, a number of statistical and computational approaches to analyzing RT-qPCR 

data have been suggested in the literature, and it is now clear that applying objective statistical methods to 

RT-qPCR data poses several challenges[8,9,16,17,18]. In this review, we briefly describe the numerical 

data generated via most relative expression RT-qPCR experiments and then discuss several practical 

issues that researchers conducting relative expression RT-qPCR experiments are likely to face. In 

particular, we focus on using linear models for parameter estimation and the evaluation of assumptions 

that are inherent to the calculation relative expression ratios (RE). We then conclude by summarizing the 

steps involved in processing relative expression RT-qPCR data, briefly discussing the issue of error 

propagation – how uncertainty in the parameters used to calculate RE affects the uncertainty of RE itself – 

and listing a set of general guidelines for the quality control and analysis of RE values.  

The Quantification Cycle: The Central Value of RT-qPCR 

The basic strategy underlying RT-qPCR is to record the accumulation of fluorescent dyes that label a 

specific nucleic acid product or double-stranded DNA molecule throughout the course of a PCR. The 

amount of product yielded by a PCR approximates a logistic (i.e., sigmoidal) curve when it is plotted as a 

function of the number of reaction cycles completed (Fig. 1). Thus, setting a threshold within the 

exponential phase of the amplification curve and recording the number of fractional cycles required to 

eclipse this threshold provides a correlate to the initial amount of template known as the quantification 

cycle (Cq; lower Cq values correspond to more starting template). However, while Cq is the value of 

interest in the majority of RT-qPCR experiments, its determination requires exclusion of ground phase 

cycles (Fig. 1; also known as the background or baseline) and determination of where along the y-axis, 

within the exponential phase, the threshold should be placed. Determination of the baseline and threshold 

is usually handled by proprietary software that comes with real-time PCR hardware, and different systems 

use different methods for baseline and threshold determination. Because this review focuses on how to 

analyze Cq values rather than how to ensure they are valid, we do not discuss baseline and threshold 

determination further and refer interested readers to Bustin and Nolan[10] and Adams[19] for discussions 

of when to adjust the baseline and threshold manually. 

The Relative Expression Quantification Strategy 

There are two general approaches to conducting RT-qPCR experiments. The first, known as absolute 

quantification, is based on calibration to a standard curve generated from a known external source (e.g., 

recombinant DNA) that enables one to express data in terms of transcripts per biological unit (e.g., 

copies/μg of tissue). The second, known as relative quantification, describes expression in arbitrary units 

that are based on comparisons to a calibrator sample or a series of calibrator samples (e.g., RNA isolated 

from control or unmanipulated sources). Because the relative quantification approach makes fewer 

assumptions, is less labor intensive, and is sufficient for most applications, it is the method most 

frequently used in basic research and is thus the focus of this review.  
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FIGURE 1. An example of a RT-qPCR amplification plot showing the four 

phases of a PCR. Dashed lines denote the approximate boundaries of each 

phase. The exponential phase is highlighted in gray. Note that the bottom dashed 

horizontal line corresponds to the ground phase.  

The traditional approach to relative expression RT-qPCR is to plug the relevant Cq values, or their 

averages, into one of a number of mathematical models that generate a RE describing expression in 

noncalibrator samples in terms of fold change relative to calibrator samples[8]. Usually, RE is normalized 

to one or more endogenous reference genes (ERGs)[8] because, in principle, this approach enables one to 

correct for variations in the amount and/or quality of the starting template that are introduced during 

upstream phases of the workflow[20]. The simplest and most widely used model of RE is known as the  

2
-ΔΔCt

 method[21] and can be described by the following equations:  

        (1) 

     (2) 

         (3) 

where GOIS = Cq for the gene of interest (GOI) from a noncalibrator sample, ERGS = Cq for the ERG 

from a noncalibrator sample, GOIC = Cq for the GOI from a calibrator sample, and ERGC = Cq for the 

ERG from a calibrator sample. Although this model is popular due to its simplicity, it is based on a 

number of assumptions, some of which are more crucial to the inferential conclusions of a study than 

others (discussed in the next section). One of the most crucial assumptions is that the ERG being used for 

normalization is invariant across the groups being considered. Also of critical importance is that the 

reaction efficiencies are equal among the four reactions that are used to calculate RE. Finally, there must 

be a doubling of the reaction product following every cycle (i.e., a percentile reaction efficiency [PAE] of 

one or a reaction efficiency [E] of two) in order for the 2
-ΔΔCt

 method to estimate the magnitude of RE 

accurately. In practice, any combination of these assumptions can be violated, with the end result being an 

inaccurate estimate of RE and/or spurious statistical significance[8,18,22,23]. 
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ADDRESSING ASSUMPTIONS THAT ARE LIKELY TO BE VIOLATED 

Endogenous Reference Gene Stability 

Perhaps the most critical assumption of all relative expression RT-qPCR analyses is that the ERG used 

for normalization is invariant across all of the groups being considered[8,20,22,23]. It has long been 

known that assuming that highly expressed ―housekeeping‖ genes are invariant across treatments/groups 

is poor practice. Moreover, it is unlikely that any genes are universally suitable as ERGs across all tissues 

and research paradigms. Therefore, it is important to verify that ERGs are invariant each time one wishes 

to investigate a new experimental system or tissue[7,14,23,24]. However, ERG validation is often 

challenging and can become a circular problem because without a way of accounting for the effect of 

each RNA sample, it can be difficult to tell whether differences in ERG Cq values are due to differences 

among the groups being compared or to the technical variation that one is trying to remove via 

normalization[25,26,27].  

A widely used approach to ERG validation is implemented by the geNorm software package[25]. 

Here, it is assumed that candidate ERGs are not coregulated, so that pair-wise calculations between the 

candidates based on the set of RNA samples to be compared can be used to arrive at metrics of stability 

for each candidate[25]. These metrics are, in turn, used to arrive at a subset of candidate ERGs from 

which a normalization factor (NF) based on the geometric mean of the subset is calculated. However, this 

so-called pair-wise approach has been criticized by Andersen et al.[26], who put forth a model-based 

approach to ERG validation that is implemented by the NormFinder software package. The statistical 

model proposed by Andersen et al.[26] is: 

        (4) 

where yigj = the log-transformed expression measure for candidate ERG i in the jth sample of group g, αig 

= the effect of candidate ERG i within experimental group g, βgj = the effect of RNA sample j from 

experimental group g, and εigj = a random variable (error term) with a mean of zero and variance σ
2
. By 

using this model as a starting point, Andersen et al.[26] arrived at estimates of intra- and intergroup 

variation in gene expression for candidate ERGs, and derived stability values (i.e., metrics) for each 

candidate. Andersen et al.[26] compared their approach to the pair-wise approach of Vandesompele et 

al.[25], and were able to show that their model-based approach selected ERGs with low intra- and 

intergroup variation and was robust to candidate panels in which some of the candidate ERGs were 

coregulated. The pair-wise approach, on the other hand, selected sets of ERGs with correlated expression 

profiles rather than genes with low intra- and intergroup variation. Thus, in situations where the 

expression of candidate ERGs are correlated across groups/treatments, the pair-wise method of 

Vandesompele et al.[25] may select ERGs that lead to inaccurate estimates of RE[26]. 

Although the model-based approach of Andersen et al.[26] is robust with respect to candidate ERG 

panels in which some of the genes are coregulated, its validity depends on several assumptions. For 

example, the model-based approach assumes that the average expression of the candidate ERGs does not 

vary across the groups being considered. To meet this assumption, Andersen et al.[26] originally 

demonstrated the model-based approach with candidate ERGs that were carefully selected from 

microarray data that suggested that the candidates were stably expressed across the groups of interest. 

Thus, in cases where microarray data are not available for candidate ERG identification, it may be 

difficult to assess the assumptions of the model-based approach. Hence, when microarray data are not 

available ahead of time, the pair-wise method of Vandesompele et al.[25] may be more feasible, provided 

that the user is aware of its assumptions and limitations (see above).  

To conclude our discussion on ERG stability, we point out that mixed effect models provide a well-

established framework for modeling correlated data and individual effects[28]. Nevertheless, to the best 

of our knowledge, mixed models have not been used to derive statistical tests of ERG stability. However, 
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if we wish to evaluate the suitability of a candidate ERG among g groups and j RNA samples, then 

provided that there is sufficient technical replication of Cq for each of the j samples, we can formulate the 

following mixed model:  

       (5) 

where yigj = the ith Cq reading from the jth RNA sample in the gth group, β0 = the intercept, Gg = the fixed 

effect of the gth group, Ij(Gg) = the random effect of the jth RNA sample nested within the gth group, and 

εigj = the error associated with the ith Cq reading from the jth RNA sample in the gth group. Of particular 

relevance is that this model allows us to avoid circularity by enabling us to assess whether there is 

significant variation in candidate ERG Cq values among groups (i.e., test for statistical significance of the 

Gg term) in the presence of parameters that allow for the statistical removal of the effects of individual 

RNA samples. 

Estimating Reaction Efficiency 

Another assumption of the 2
-ΔΔCt

 model that is likely to be violated is the assumption of 100% reaction 

efficiency (i.e., E = 2 or PAE = 1) for all of the reactions that are used to calculate RE[18]. While it is 

unlikely that any PCR has precisely 100% efficiency, implicit to this assumption is the additional 

assumption that all of the reactions used to calculate RE have equal efficiencies. Thus, while situations in 

which E differs from two, but is more-or-less equal among the reactions used to calculate RE, will result 

in inaccurate estimates of RE, they are not likely to result in erroneous inferences about differences 

between groups. However, cases in which the efficiencies of the reactions used to calculate RE are 

qualitatively different will lead to poor estimates of RE and may lead to erroneous inferences about 

differences between groups. Thus, the assumption of equivalent efficiencies is more critical than the 

assumption of 100% reaction efficiency when it comes to determining whether there are differences 

among groups. One of the first models to incorporate the concept of reaction efficiency into the 

calculation of RE was put forward by Pfaffl[29]. According to Pfaffl[29], the relative expression ratio is: 

          (6) 

where, EGOI = the reaction efficiency of the gene of interest, EERG = the reaction efficiency of the 

endogenous reference gene, and GOIC, GOIS, ERGC, and ERGS are as defined above for Eq. 1. 

Recently, this model has been expanded by Hellemans et al.[30] to the following form that allows for 

multiple ERGs:  

         (7) 

where f = the number of ERGs used for normalization and the remaining variables are as defined for Eq. 

6. It is important to note that while these models account for differences in E between the GOI and ERG, 

they assume that neither EGOI nor EERG vary between calibrator and noncalibrator samples. As is briefly 

discussed below, this assumption may be violated, and methods for assessing whether this is the case 

have been presented by Burns et al.[31] and Yuan et al.[17,18]. 

The introduction of E into relative quantification models means that E must be empirically estimated 

in order for these models to be used. The most commonly used approach for doing this is to estimate the 

average E from a series of reactions that were set up using a variety of cDNA template concentrations 
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(i.e., a dilution series). One can then equate the slope of the linear regression of log10(cDNA 

concentration) against Cq to E as follows:  

          (8) 

where m is the slope estimated via linear regression (Fig. 2A)[8,29]. More recently, Yuan et al.[17,18] 

suggested estimating the PAE by regressing the log2(cDNA concentration) against Cq as in Fig 2B. E and 

PAE can be related by Eq. 9[18]. 

        
   (9) 

 

FIGURE 2. Various methods of estimating E and PAE. (A) Estimation of E from a dilution 

series using the log10(cDNA concentration) method. E is estimated using Eq. 8 (see text). (B) 

Estimation of PAE from the same dilution series shown in panel A using the log2(cDNA 

concentration) approach. LCL = lower 95% confidence limit of the slope and UCL = upper 95% 

confidence limit of the slope. Note that the estimate of PAE is marginally greater than 1 at the 

0.05 level, indicating that this method has overestimated the true value of PAE. (C) A log2 

transformation of the amplification plot shown in Fig. 1. The exponential phase of the reaction 

consists of cycles 18 through 22 as indicated by the dashed vertical lines. (D) Estimation of PAE 

using the exponential phase cycles highlighted in panel C. Note that the estimate of PAE is not 

significantly different from 1 at the 0.05 level. 
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The advantage of using the approach of Yuan et al.[17,18] is that the slope of the regression can be 

interpreted on the raw scale (i.e., PAE = -m, where m is the slope estimated via regression), which, in 

turn, leads to straightforward statistical tests of departures from 100% efficiency (i.e., is PAE = -1?) and 

differences among samples/groups (i.e., do the slopes estimated from different samples/groups differ from 

each other?; also see Burns et al.[31]).  

Despite being the most commonly used method, estimating E or PAE from dilution series data has 

several drawbacks. Most obviously, the dilution series method requires considerable amounts of RNA and 

is laborious. Hence, for large experiments, it may not be feasible to estimate E for every sample and gene 

combination. In addition, the dilution series approach does not estimate reaction-specific efficiencies, but 

rather the average E across several reactions. Thus, dilution series–based estimations provide no means of 

identifying reactions with outlying E values (see below). Finally, dilution series–based methods 

occasionally yield estimates of E that are >2, suggesting that they are prone to overestimating E (Fig. 

2B)[8]. 

The second general method for estimating reaction efficiencies is to use the cycle-by-cycle 

fluorescence data that are collected during the course of a real-time PCR (Fig. 1). This approach has the 

advantage of being able to yield an estimate of the reaction efficiency for every reaction. Furthermore, 

unlike the dilution series approach, it does not require additional labor as fluorescence data are acquired 

during the course of conducting an experiment. A number of strategies for estimating reaction efficiencies 

from fluorescence data have been suggested in the literature. However, the most straightforward 

approaches involve identifying the exponential phase of the amplification curve (Fig. 1; see Pierson et 

al.[32] and Ramakers et al.[33] for descriptions of algorithms that are useful for automating the process of 

identifying the exponential phase), and regressing the resulting log10[32,33] or log2[18] transformed 

subset of fluorescence values against cycle number (Fig. 2C,D). The resulting slope of this regression can 

be used to obtain an estimate of E or PAE (Fig 2D). As is the case with dilution series data, using the log2 

scale has the advantage of yielding estimates of PAE that are interpretable on the raw scale as the slope of 

the regression on the log2 scale is itself an estimate of PAE.  

While estimating reaction efficiencies from fluorescence data has several advantages over the dilution 

series method (see above), there are some drawbacks. An obvious concern is that for large experiments 

involving thousands of reactions, using florescence-based approaches creates a considerable informatics 

problem. Another concern that arises when using fluorescence-based methods that rely on linear regression 

is that the reaction efficiency estimates will be based on small sample sizes due to the exclusion of a large 

number of reaction cycles. Finally, it is not clear that using the efficiency estimates generated for every 

reaction in a dataset is the most appropriate use of this information as analyzing data based on reaction-

specific efficiencies may introduce considerable noise into a dataset[32,34]. Pierson et al.[32] and Cikos et 

al.[34] have suggested that analyses based on averaged efficiencies provide more robust results and that 

reaction-specific efficiencies should be used primarily to exclude reactions that have outlying efficiencies.  

In conclusion to our discussion of efficiency, we note that we have only reviewed strategies that use 

linear regression to estimate E or PAE from fluorescence data. Our reason for doing this is that linear 

regression is the most conceptually simple approach to estimating reaction efficiencies and is therefore 

likely to be the most accessible to practicing biologists with a limited background in statistics. Nevertheless, 

several strategies for addressing the issue of reaction efficiency that rely on nonlinear regression have also 

been proposed[35,36,37], many of which are implemented by the qpcR software package[38]. 

STATISTICAL INFERENCE 

Conventional Tests and Data Transformation 

By far the most common way in which RT-qPCR data are analyzed is via the use of standard parametric 

statistical tests (i.e., t-test, ANOVA, etc.) that assess whether RE varies as a function of the 

groups/treatments being considered. As described in the previous section, there are a number of situations 
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that can render such analyses invalid. Nevertheless, if the assumptions that are essential to calculating 

unbiased estimates of RE are met, the application of objective statistical methods to relative expression 

RT-qPCR data is valid. When using conventional parametric statistics to evaluate RT-qPCR data, it is 

important to bear in mind that RE is not symmetrically scaled as up-regulated values of RE lie on one scale 

(1 < RE < ∞) and down-regulated values lie on another scale (1 > RE > 0). We recommend analyzing 

log2(RE) because log transformations of RE result in symmetrically scaled expression measures that are 

more likely to meet the assumption of normality that is inherent to most parametric models[27]. As shown 

in Eq. 3, ΔΔCq lies on the same scale as log2(RE) and thus offers the same advantages. 

Permutation Procedures and Linear Models for Comparisons of Two Groups 

Although most analyses of relative expression RT-qPCR data use conventional parametric tests, several 

authors have suggested RT-qPCR–specific methods for drawing inferences about whether RE (or 

transformations thereof) statistically differs between two groups of interest. One of the earliest methods 

for doing this was put forward by Pfaffl et al.[39] and is based on a resampling procedure. In this 

approach, two biologically replicated groups (i.e., calibrator and noncalibrator) are considered in which 

one group consists of n1 samples and the second group consists of n2 samples. For each sample in both 

groups, GOI and ERG Cq values are generated (potentially with technical replication) and RE is calculated 

according to Eq. 6, using the means of the two respective groups (i.e., calibrator and noncalibrator) for 

GOIS, ERGS, GOIC, and ERGC. A large number of pseudosamples (>1000) are then generated by 

permutating the group labels of the GOI and ERG readings. RE is then calculated for each pseudosample 

and the proportion of pseudosamples with more extreme RE values than the observed RE value is used to 

estimate a p value for the null hypothesis that the two groups have an RE of 1 (i.e., log[RE] = 0; see Pfaffl 

et al.[39] for additional details). 

More recently, Yuan et al.[17,18] proposed a number of ways to estimate and assess the statistical 

significance of ΔΔCq using linear models. Particularly noteworthy is that Yuan et al.[18] were able to 

demonstrate the flexibility of their approach by presenting methods for estimating an efficiency-adjusted 

ΔΔCq (ΔΔCqadj; Eq. 10) based on dilution series data and fluorescence data.  

 (10)  

While a comprehensive review of the methodologies developed by Yuan et al.[17,18] for estimating 

and assessing ΔΔCq is beyond the scope of this review, we present one of the models from Yuan et al.[17] 

to give a feel for these authors’ approach to assessing statistical significance of RT-qPCR data. Here, we 

assume that a researcher wants to assess whether two biologically replicated groups (i.e., calibrator and 

noncalibrator) differ in the expression of a GOI that has been normalized to an ERG. Moreover, we 

assume that the researcher has generated dilution series data for every calibrator and noncalibrator sample 

for both the GOI and the ERG. Once in place, these data can be recoded into four groups such that group 

one corresponds to GOI readings from calibrator samples, group two corresponds to GOI readings from 

noncalibrator samples, group three corresponds to ERG readings from calibrator samples, and group four 

corresponds to ERG readings from noncalibrator samples. An analysis of covariance (ANCOVA) model 

of the following form can then be fit to the data: 

  (11)  

where β0 = the intercept, βcon = the effect of template concentration, βgroup = the effect of the grouping 

variable described above, βgroupcon = the effect of the interaction between group and concentration, and ε = 

the error term. It then follows that contrasting the parameters associated with the βgroup term (i.e., μx below 
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where x is one of the four groups described above) according to Eq. 12 results in an estimate of ΔΔCq as 

well as a test of the null hypothesis that ΔΔCq = 0. 

         (12) 

The parameters associated with the βgroupcon term are also of interest as they are slopes that describe 

how Cq changes as a function of log2(template concentration) for each of the four groups. Thus, the 

βgroupcon parameters can be used to test for equal efficiencies among groups and/or to efficiency correct 

(see Eq. 10) the ΔΔCq estimate that results from the contrast presented in Eq. 12[18]. 

While the RT-qPCR specific approaches to inference described above provide explicit statistical 

frameworks for interpreting results, they do not, in and of themselves, alleviate the burden of meeting the 

assumptions of relative expression models. Therefore, it is still critical to ensure that ERGs are invariant 

and that data comply with the assumptions about reaction efficiency made by the model. At present, a 

major drawback to many of the RT-qPCR specific statistical tests is that they only allow for comparisons 

of two groups. Thus, there is a need for general RT-qPCR–specific statistical frameworks that enable 

researchers to assess complex experimental designs, while simultaneously providing tools for inspecting 

data quality with respect to the assumptions that are critical to the validity of the method. 

DATA PROCESSING, ERROR PROPAGATION, AND RECOMMENDATIONS 

It has now been repeatedly demonstrated that the way in which RT-qPCR data are processed and analyzed 

can strongly influence the biological conclusions drawn from the data[16,40]. Although a large number of 

processing procedures have been described in the literature, there is currently no consensus on which 

methods are most robust. The quality control and processing steps that are essential to calculating valid 

RE values include baseline determination, threshold determination, control gene validation, efficiency 

estimation, and removal of reactions with outlying Cq[31] and/or E values. In addition, if samples from 

separate runs (i.e., separate microtiter plates) are to be directly compared, it is likely that some sort of 

inter-run calibration will be required[30]. One of the most important issues associated with data 

processing that is a source of ongoing research is the issue of error propagation[9,30,41]. Of particular 

concern within the context of the approaches to data analysis discussed in this review is that all of the 

components needed to calculate RE, such as efficiency estimates and Cq values, are themselves measured 

with uncertainty. Although it is common practice to technically replicate Cq values (i.e., taking the 

average of several Cq values that were generated from the same RNA sample), the dispersion estimates 

(e.g., variance, standard error, etc.) associated with technically replicated Cq values are often not used to 

calculate measures of dispersion for RE. Moreover, error propagation with respect to the uncertainty 

surrounding efficiency estimates is also frequently lacking. Thus, there is a need to develop processing 

procedures that account for this uncertainty as well as user-friendly software implementations of these 

procedures that make them readily available to practicing biologists. 

When conducting RT-qPCR experiments, one of the first decisions that must be made is which genes 

to evaluate for suitability as ERGs. In cases where companion microarray data are available, the model-

based approach of Andersen et al.[26] is well suited for ERG identification. In situations where 

companion microarray data are not available, the pair-wise approach of Vandesompele et al.[25] may 

enable the identification of ERGs that allow for the calculation of a stable NF. Irrespective of whether a 

single ERG or an NF is used for normalization, the mixed model presented in Eq. 5 can be used as a post 

hoc assessment of whether the selected ERG or NF is stable across the groups of interest after the effects 

of the individual RNA samples have been statistically removed. Once it is clear that the ERG/NF is 

indeed stable, the next step is to estimate E or PAE. In our opinion, estimating the PAE from fluorescence 

data on the log2 scale according to Yuan et al.[18] offers several advantages. First, unlike the dilution 

series method, it does not require additional labor, reagents, and RNA, which may be prohibitive if there 

are a large number of samples or GOIs to investigate. Second, linear regression on the log2 scale enables a 
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direct estimate of PAE for every reaction as well as a statistical test of whether PAE statistically differs 

from one. Third, standard methodologies for comparing the slopes of different regression models[31,42] 

can be used to assess whether any of the slopes used to calculate a given RE value statistically differ from 

one another. Therefore, one is not forced to make the assumption that EERG and EGOI are equal across the 

groups being considered (see Eqs. 6 and 7). Eq. 10 can then be used to calculate ΔΔCqadj. However, the 

PAE parameters in this equation should be based on the average PAE for each of the four respective 

groups, and reactions with outlying Cq values and/or PAE values should be excluded. In cases where there 

are more than two groups to compare, there will be more than one noncalibrator group. Because ΔΔCqadj 

lies on the log2 scale, ΔΔCqadj can itself be treated as an expression measure and analyzed using 

conventional parametric statistical tests such as ANOVA. 
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